skip to main content


Search for: All records

Creators/Authors contains: "Wylezalek, Dominika"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    To facilitate new studies of galaxy-merger-driven fueling of active galactic nuclei (AGNs), we present a catalog of 387 AGNs that we have identified in the final population of over 10,000z< 0.15 galaxies observed by the Sloan Digital Sky Survey-IV (SDSS-IV) integral field spectroscopy survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA). We selected the AGNs via mid-infrared Wide-field Infrared Survey Explorer colors, Swift/Burst Alert Telescope ultra-hard X-ray detections, NRAO Very Large Array Sky Survey and Faint Images of the Radio Sky at Twenty centimeters radio observations, and broad emission lines in SDSS spectra. By combining the MaNGA AGN catalog with a new SDSS catalog of galaxy mergers that were identified based on a suite of hydrodynamical simulations of merging galaxies, we study the link between galaxy mergers and nuclear activity for AGNs above a limiting bolometric luminosity of 1044.4erg s−1. We find an excess of AGNs in mergers, relative to nonmergers, for galaxies with stellar mass ∼1011M, where the AGN excess is somewhat stronger in major mergers than in minor mergers. Further, when we combine minor and major mergers and sort by merger stage, we find that the highest AGN excess occurs in post-coalescence mergers in the highest-mass galaxies. However, we find no evidence of a correlation between galaxy mergers and AGN luminosity or accretion rate. In summary, while galaxy mergers overall do appear to trigger or enhance AGN activity more than nonmergers, they do not seem to induce higher levels of accretion or higher luminosities. We provide the MaNGA AGN Catalog and the MaNGA Galaxy Merger Catalog for the community here.

     
    more » « less
  2. ABSTRACT

    Red quasars may represent a young stage of galaxy evolution that provide important feedback to their host galaxies. We are studying a population of extremely red quasars (ERQs) with exceptionally fast and powerful outflows, at median redshift z = 2.6. We present Keck/Keck Cosmic Web Imager integral field spectra of 11 ERQs, which have median colour i–W3 = 5.9 mag, median 〈 Lbol 〉 ≈ 5 × 1047 erg s−1, Ly α halo luminosity 〈 Lhalo 〉 = 5 × 1043 erg s−1, and maximum linear size >128 kpc. The ERQ haloes are generally similar to blue quasar haloes, following known trends with Lbol in halo properties. ERQs have halo symmetries similar to Type-I blue quasars, suggesting Type-I spatial orientations. ERQ 〈 Lhalo 〉 is ∼2-dex below blue quasars, which is marginal due to scatter, but consistent with obscuration lowering photon escape fractions. ERQ haloes tend to have more compact and circularly symmetric inner regions than blue quasars, with median exponential scale lengths ∼9 kpc, compared with ∼16 kpc for blue quasars. When we include the central regions not available in blue quasar studies (due to point spread function problems), the true median ERQ halo scale length is just ∼6 kpc. ERQ haloes are kinematically quiet, with median velocity dispersion 293 km s−1, consistent with expected virial speeds. Overall, we find no evidence for feedback on circumgalactic scales, and the current episode of quasar activity (perhaps due to long outflow travel times) has not been around long enough to affect the circumgalactic medium. We confirm the narrow Ly α-emission spikes found in ERQ aperture spectra are halo features, and are useful for systemic redshifts and measuring outflow speeds in other features.

     
    more » « less
  3. ABSTRACT

    Dusty quasars might be in a young stage of galaxy evolution with prominent quasar feedback. A recently discovered population of luminous, extremely red quasars at z ∼ 2–4 has extreme spectral properties related to exceptionally powerful quasar-driven outflows. We present Keck/KCWI observations of the reddest known ERQ, at z = 2.3184, with extremely fast [O iii] λ5007 outflow at ∼6000 km s−1. The Lyα halo spans ∼100 kpc. The halo is kinematically quiet, with velocity dispersion ∼300 km s−1 and no broadening above the dark matter circular velocity down to the spatial resolution ∼6 kpc from the quasar. We detect spatially resolved He ii λ1640 and C iv λ1549 emissions with kinematics similar to the Lyα halo and a narrow component in the [O iii] λ5007. Quasar reddening acts as a coronagraph, allowing views of the innermost halo. A narrow Lyα spike in the quasar spectrum is inner halo emission, confirming the broad C iv λ1549 in the unresolved quasar is blueshifted by 2240 km s−1 relative to the halo frame. We propose the inner halo is dominated by moderate-speed outflow driven in the past and the outer halo dominated by inflow. The high central concentration of the halo and the symmetric morphology of the inner region are consistent with the ERQ being in earlier evolutionary stage than blue quasars. The He ii λ1640/Lyα ratio of the inner halo and the asymmetry level of the overall halo are dissimilar to Type II quasars, suggesting unique physical conditions for this ERQ that are beyond orientation differences from other quasar populations. We find no evidence of mechanical quasar feedback in the Lyα-emitting halo.

     
    more » « less
  4. null (Ed.)